Course catalogue

Computer Science Engineer

Second Year

Metz Campus of CentraleSupélec

last update: November 21, 2025

Semester 7

	ISP-INF-SC	7-05	Artificial Intelligence S07	8 ECTS
	3MD1530	2.5	Statistical Models 1	29.0 h
	3MD1540	3	Machine learning 1	35.5 h
ĺ	3MD4040	2.5	Deep learning	28.5 h

ISP-INF-S07-06		Computer Science 1 S07	7 ECTS
SPM-INF-012	2	HPC on a single computing node	22.5 h
3MD4130	2	Big Data computation models	21.0 h
SPM-INF-011	3	Software engineering	36.0 h

ISP-INF-S07-	27	Computer Science 2 S07	7 ECTS
SPM-INF-014	2	Langage processing	21.0 h
SPM-INF-013	2	Operations research	19.5 h
SPM-MAT-004	2	Optimization	25.0 h
SPM-MAT-007	1	Information Theory	11.0 h

ISP-INF-S07-23		HEP S07	4 ECTS
SPM-HEP-014	2	Business Management and Transformation	26.5 h
SPM-HEP-013	P/F	Conferences	10.0 h
SPM-HEP-019	1	Human ressources Management	18.0 h
SportS07	P/F	Sport S07	21.0 h

ISP-INF-S07-17	Foreign Language S07	4 ECTS
LV1S07 1	Foreign Languages and Culture 1	21.0 h
LV2S07 1	Foreign Languages and Culture 2	21.0 h

Semester 8

ISP-INF-S08-07		Software Developpement S08	10 ECTS	
SPM-INF-015	3	Applicative architectures	41.0 h	
SPM-PRJ-003	7	Software development project	84.0 h	

ISP-INF-S08-08	Computer Science S08	9 ECTS
SPM-INF-004 2.	Introduction to Quantum Computing	35.5 h
SPM-INF-016 2.	Programming paradigms	28.5 h
SPM-INF-017 2.	Autonomous robotics	41.0 h
SPM-PRJ-004 1.	Robotic and AI project	21.0 h

ISP-INF-S08-24		HEP S08	7 ECTS
SPM-HEP-011	1	Engineer, environment and society	14.0 h
SPM-HEP-018	1	Controversy	18.0 h
SPM-HEP-017	2	Systems engineering	21.5 h
SportS08	P/F	Sport S08	21.0 h
SPM-STA-002	4	Engineering internship	0.0 h

ISP-INF-S08-18	Foreign Language S08	4 ECTS
LV1S08 1	Foreign Languages and Culture 1	21.0 h
LV2S08 1	Foreign Languages and Culture 2	21.0 h

STATISTICAL MODELS 1

Course supervisor: Frédéric Pennerath

Total: 29.0 h **CM:** 16.5 h, **TD:** 4.5 h, **TP:** 6.0 h

3MD1530 back

Description: The "Statistical Modeling" courses ModStat1 and ModStat2 deal with the modeling of systems for which the outputs are sufficiently uncertain that they need to be modeled by random variables. The course begins with a review of statistics and the introduction of elementary models (e.g. naive Bayes, linear regression, etc.), moving progressively towards more complex models. While the courses present the most useful elementary models and methods in this modeling context, they are not intended to be an exhaustive catalog. The aim is rather to present, within a consistent theory, the concepts and tools common to all these models and methods, and to show how, starting from modeling hypotheses specific to each concrete problem, these concepts are logically assembled before leading to an operational method. From a practical point of view, the aim of this course is not only to give students the means to understand and make good use of existing model implementations, but also to design their own implementations to take into account the specificities of a given problem. The course focuses on linking theory to practice: first, the hypotheses associated with a given class of problems are identified in class, followed by theoretical modeling work, leading to the definition of a model and its estimation algorithms. These results are then applied to a case study in tutorial sessions, before being implemented (in Python) and evaluated on data in practical exercises. The ModStat1 course will introduce the basic tools of statistical modeling, while the ModStat2 course will focus on hidden variable models.

Prerequisites: - Basic knowledge of probability theory, statistics and machine learning - Beginner level in Python / Numpy programming

Learning outcomes: - Be able to choose a statistical model/method adapted to the problem under consideration and implement it appropriately - Be able to understand the theoretical concepts underlying a statistical inference method presented in a scientific article. - Be able to implement a model / statistical method in a language such as Python. - Be able to adapt a model/method to take into account the specificities of the problem being addressed.

Evaluation methods: 2h written test without documents, can be retaken.

Evaluated skills:

- Modelling
- Research and Development

CM:

- 1. Modèles statistiques (1.5 h)
- 2. Estimation (1.5 h)
- 3. Estimation bayésienne (1.5 h)
- 4. Réseaux bayésiens 1 (1.5 h)
- 5. Naive Bayes (1.5 h)
- 6. Réseaux bayésiens 2 (1.5 h)

- 7. Causalité (1.5 h)
- 8. Modèles gaussiens (1.5 h)
- 9. Modèles linéaires (1.5 h)
- 10. Famille exponentielle $(1.5\ h)$
- 11. GLM (1.5 h)

TD:

- 1. Estimation bayésienne (1.5 h)
- 2. Modélisation causale (1.5 h)
- 3. Régression (1.5 h)

- 1. Modélisation et modèles gaussiens $(3.0\ h)$
- 2. Régression (3.0 h)

Machine Learning 1

Course supervisor: Hervé Frezza-Buet

Total: 35.5 h **CM:** 13.5 h, **TP:** 20.0 h

3MD1540 back

Description: This course sets out the general framework of machine learning, allowing you to situate the different approaches in the field. It covers the notions of data pre-processing, an introduction to statistical learning theory (risks, overlearning, convex proxies, regularization), the difference between frequentist and Bayesian approaches, supervised, unsupervised, semi-supervised and reinforcement learning paradigms. Some approaches are detailed (Kernel methods, SVM, Boosting, Bagging, Decision trees...).

Learning outcomes: At the end of this course, students will be able to recognize the different classes of algorithms in the landscape of the many methods available on the shelf. They will also have the statistical notions that will enable them to make reasoned use of these methods, thus avoiding a black-box approach with blind parameter testing.

Means: The courses and practical work are given by Hervé Frezza-Buet, Arthur Hoarau, Jérémy Fix. The courses present theoretical aspects, mathematical proofs, but are also illustrated by demonstrations of algorithms. The practical work will be done in Python, using sickit-learn, in pairs.

Evaluation methods: 2h written test, can be retaken.

Evaluated skills:

- Research and Development
- Development

CM:

- 1. Datasets and learning (1.5 h)
- 2. Frequentist, Bayesian, evaluation (1.5 h)
- 3. Risks (1.5 h)
- 4. C-SVC, Lagrange formulation (1.5 h)
- 5. Kernels, numerical resolution (1.5 h)
- 6. SVMs for regression, unsupervized learning, nu-versions of SVMs. (1.5 h)
- 7. Arbres de décision (1.5 h)
- 8. Bagging (1.5 h)
- 9. Boosting (1.5 h)

- 1. Data Science en Python (3.0 h)
- 2. Arbres de décision (3.0 h)
- 3. Bagging (3.0 h)
- 4. Forêts aléatoires (3.0 h)
- 5. TP+ 1/2 (4.0 h)
- 6. TP+ 2/2 (4.0 h)

DEEP LEARNING

Course supervisor: Jérémy Fix

Total: 28.5 h **CM:** 13.5 h, **TP:** 15.0 h

3MD4040 back

Description: Deep learning is a technology that is booming, thanks in particular to the use of GPUs (Graphical Processing Units), the availability of large amounts of data and the understanding of theoretical elements that make it possible to better define neural network architectures that are more easily trainable. In this course, students will be introduced to the basics of neural networks and also to the different architectural elements that make it possible to design a neural network according to the prediction problem considered. The course is divided into modules in which questions of optimization algorithms, their initialization, regularization techniques, fully connected architectures, convolutional networks, recurrent networks, introspection techniques are addressed. Practical works on GPUs are associated with the courses.

Content: The lectures will be discussing:

- Historical introduction to neural networks, linear classifier/regressor (1.5 HPE) Computational graph and gradient descent, Fully connected networks, RBFs, Auto-encoders, Optimisation methods, initialisation, regularisation (3 HPE) Convolutional networks: architectures (1.5 HPE) Convolutional networks: classification, object detection, semantic segmentation (1.5 HPE) Recurrent networks: architectures and training (1.5 HPE) Recurrent networks: applications (1.5 HPE) Transformer approaches (1.5 HPE) Generative models: au-
- Recurrent networks: applications (1.5 HPE) Transformer approaches (1.5 HPE) Generative models: autoregressive models, VAE, GANs and diffusion (1.5 HPE)

The praticals will be on:

- Introduction to pytorch on classification with linear predictors, fully connected networks and convolutional networks (3 HPE) - Convolutional neural networks for semantic segmentation (3 HPE) - Recurrent neural networks applied to sequence to sequence translation (3 HPE) - Adversal neural networks (3 HPE) - Self-supervized learning (3 HPE)

Learning outcomes: Being able to implement and deploy a deep learning algorithm Being able to choose the right architecture that suits a particular machine learning problem Being able to diagnose the training of a neural network (what is it learning? how is it learning? is it learning? will it be able to generalize?)

Teaching methods: The course is structured into lectures during which we introduce the theoretical and experimental notions are introduced and illustrated with various examples. Practicals allow the students to put into practice the notions we discuss during the lectures.

Means: We will be using the Pytorch framework. The students could work in pairs and will make use of GPUs of the Data Center d"Enseignement of the Metz campus for running their codes. A page will be dedicated on edunao. Forums will be opened, allowing the students to ask questions on the lectures or the tutorials, having the possibility to interact with the teaching staff but between them as well.

Evaluation methods: The assessment will be based on two elements: assessments on paper questionnaires at the beginning of each practical session and participation to a dedicated challenge in a team. The grade depends both on their submission, and a recorded video explaining their approach and results.

Evaluated skills:

- Modelling
- Research and Development
- Management

External resources:

- Site du cours
- Sujets des TPs

CM:

- 1. Introduction et réseaux linéaires (1.5 h)
- 2. Graphe de calcul, descente de gradients et réseaux feedforward (1.5 h)
- 3. Optimisation, Initialisation, Régularisation (1.5 h)
- 4. Eléments d'architectures des réseaux convolutifs $(1.5\ h)$
- 5. Applications des réseaux convolutifs à la détection d'objets et la segmentation sémantique (1.5 h)
- 6. Les approches par transformers (1.5 h)
- 7. Eléments d'architecture des réseaux récurrents (1.5 h)
- 8. Architectures et applications des réseaux récurrents (1.5 h)
- 9. Modèles génératifs : modèles auto-regressifs, VAE, GANs et diffusion (1.5 h)

- 1. Introduction à PyTorch par la classification d'images (3.0 h)
- 2. Réseaux convolutifs pour la segmentation sémantique (3.0 h)
- 3. Application des RNNs pour la retranscription de la parole (3.0 h)
- 4. Modèles génératifs (3.0 h)
- 5. Apprentissage auto-supervisé (3.0 h)

HPC on a single computing node

Course supervisor: Stéphane Vialle

Total: 22.5 h **CM:** 9.0 h, **TD:** 3.0 h, **TP:** 9.0 h

SPM-INF-012 back

Evaluation methods: 1h30 written test (can be retaken) and labwork reports (cannot be retaken).

Evaluated skills:

- Development
- Modelling

CM:

- 1. Cours d'architecture des CPU multi-coeurs et des caches (1.5 h)
- 2. Cours de compilation optimisée et de vectorisation (1.5 h)
- 3. Cours de mesure et d'analyse de performances (1.5 h)
- 4. Cours d'OpenMP et de bibliothèques BLAS (3.0 h)
- 5. Cours d'algorithmique parallèle (1.5 h)

TD:

- 1. TD d'optimisation sérielle et de vectorisation $(1.5\ h)$
- 2. TD de programmation OpenMP (1.5 h)

- 1. TP d'optimisation sérielle et de vectorisation (3.0 h)
- 2. TP de programmation OpenMP (3.0 h)
- 3. TP d'algorithmique et de programmation parallèle optimisée (3.0 h)

BIG DATA COMPUTATION MODELS

Course supervisor: Stéphane Vialle

Total: 21.0 h **CM:** 10.5 h, **TD:** 1.5 h, **TP:** 9.0 h

3MD4130 back

Description: The goal of this course is to teach students how to develop high-performance data analysis applications in the Spark environment on distributed platforms (clusters and clouds). Distributed file system mechanisms such as HDFS will be studied, as well as Spark's extended map-reduce programming model and algorithmic on top of Spark "RDD", followed by higher-level programming models on top of Spark "Data Frames", and finally programming models on Clouds. Scaling criteria and metrics will also be studied. Throughout the course, implementations will take place on clusters and in a Cloud, and the developed solutions will be evaluated by the performance obtained on test cases, and by their ability to scale.

Content: Emergence of Big Data technologies: motivations, industrial needs, main players. Hadoop software stack, architecture and operation of its distributed file system (HDFS) Spark distributed computing architecture and deployment mechanism Spark "RDD" programming model and algorithmics of Spark extended map-reduce Spark "Data Frames" programming model applied to graph analysis (GraphX module) Architecture et environnement d'analyse de données sur Cloud Experiments and performance measures Performance criteria and metrics

Learning outcomes: After this course, students will be able:

Learning Outcome AA1: to design and implement extended map-reduce algorithms, powerful and scaling on distributed platforms, Learning Outcome AA2: to analyse the scaling capabilities of an application, Learning Outcome AA3: to use a cluster or a cloud to achieve large scale data analysis, Learning Outcome AA4: to synthetically present a data analysis solution designed on top of a "map-reduce" model.

Teaching methods: This course links 3 parts relating to "Big Data" computing models: the first on PC clusters, the second in the Cloud, and the third which assesses "scaling-up" solutions.

Course plan in 4 parts:

- Part 1: Software architecture and development with Spark RDD on top of HDFS and PC clusters.
- Part 2: Criteria and metrics for performance and scaling.
- Part 3: Large scale computation and data analysis on Cloud.
- Part 4: Development with Spark Data Frames on top of HDFS and PC clusters.

Means: Teaching team: Stéphane Vialle and Gianluca Quercini (CentraleSupelec), Wilfried Kirschemann (ANEO) Development and execution plateform: computing clusters of the Data Center for Education (DCE) of CentraleSupelec Metz campus access to a professional cloud Development environment: Spark+HDFS on DCE machines other environment on Cloud ressources

Evaluation methods: Evaluation from Labs:

The reports of the Labs will be evaluated (the content and the number of pages of the reports will be constrained, in order to force the students to an effort of synthesis and clarity) In case of unjustified absence from a practical course, a mark of 0 will be applied; in case of justified absence, the practical course will not be included in the final mark. The remedial exam will be a 1 hour written exam, which will constitute 100

Evaluated skills:

- Development
- System

CM:

- 1. Emergence du Big Data et technologie HDFS d'Hadoop (1.5 h)
- 2. Technologie Spark-RDD et programmation Map-Reduce (1.5 h)
- 3. Optimisation et déploiement de codes Map-Reduce (1.5 h)
- 4. Métriques de passage à l'échelle et architecture des Data Lakes (1.5 h)
- 5. Spark Data-Frames et Spark SQL (1.5 h)
- 6. Problématiques du cloud (1.5 h)
- 7. Environnement de développement sur cloud $(1.5~\mathrm{h})$

TD:

1. Algorithmique Map-Reduce en Spark (1.5 h)

- 1. Map-Reduce sur cluster Spark-HDFS: programmation et performances (3.0 h)
- 2. Analyse de données en Spark Data-Frame et Spark SQL sur cluster Spark-HDFS (3.0 h)
- 3. Développement et déploiement d'une analyse de données extensible sur Cloud $(3.0\ \mathrm{h})$

SOFTWARE ENGINEERING

Course supervisor: Michel Ianotto

Total: 36.0 h **CM:** 12.0 h, **TD:** 3.0 h, **TP:** 18.0 h

SPM-INF-011 back

Evaluation methods: 3h written test, can be retaken

Evaluated skills:

- Modelling
- Development
- System

CM:

- 1. modélisation et diagrammes UML (3.0 h)
- 2. patrons de conception (3.0 h)
- 3. qualité logicielle (3.0 h)
- 4. projet logiciel (1.5 h)
- 5. méthodes agiles (1.5 h)

TD:

- 1. modélisation (1.5 h)
- 2. système à refactorer (1.5 h)

- 1. UML (3.0 h)
- 2. refactoring par application de patrons (3.0 h)
- 3. tests unitaires et plus (4.0 h)
- 4. intégration continue (4.0 h)
- 5. scrum (4.0 h)

Langage processing

Course supervisor: Benoît Valiron

Total: 21.0 h **CM:** 7.5 h, **TD:** 4.5 h, **TP:** 9.0 h

SPM-INF-014 back

Evaluation methods: Assessment based on participation in experiments (TD/TP) and results obtained

Evaluated skills:

• Certification

CM:

- 1. Expressions régulières, langage reconnu par un automate (3.0 h)
- 2. Grammaires (1.5 h)
- 3. Descente récursive, parseur LL (1.5 h)
- 4. Fonctionnement d'un compilateur (1.5 h)

TD:

- 1. Grammaires (1.5 h)
- 2. Descente récursive, parseur LL (1.5 h)
- 3. Compilation (1.5 h)

- 1. Reconnaissance de tokens dans un document (3.0 h)
- 2. Evaluation d'expressions arithmétiques (3.0 h)
- 3. Mise en oeuvre du compilateur sur machine (3.0 h)

OPERATIONS RESEARCH

Course supervisor: Nicolas Jozefowiez

Total: 19.5 h

SPM-INF-013 back

Evaluation methods: 1h30 written test, can be retaken

Evaluated skills:

- Modelling
- Research and Development

CM:

- 1. Programmation par contraintes (1.5 h)
- 2. Problèmes d'optimisation temporelle. Programmation dynamique $(1.5\ h)$
- 3. Problème d'affectations: couplage de graphes et mariages stables $(1.5\ h)$
- 4. Programmation linéaire entière (1.5 h)

- 1. Programmation par contraintes (3.0 h)
- 2. Programmation dynamique (3.0 h)
- 3. Problèmes de couplage (3.0 h)
- 4. Programmation linéaire entière (3.0 h)

OPTIMIZATION

Course supervisor: Michel Barret

Total: 25.0 h **CM:** 10.5 h, **TD:** 4.5 h, **TP:** 9.0 h

SPM-MAT-004 back

Evaluation methods: 1h written test, can be retaken

Evaluated skills:

• Modelling

• Research and Development

CM:

1. Bases de l'optimisation (3.0 h)

2. Convexité, quelques algorithmes itératifs (1.5 h)

- 3. Dualité (1.5 h)
- 4. Programmation linéaire (1.5 h)
- 5. Méthode des multiplicateurs de Lagrange (1.5 h)
- 6. Méthodes stochastiques gradient-free $(1.5\ h)$

TD:

- 1. Dualité (1.5 h)
- 2. Méthode des multiplicateurs de Lagrange (1.5 h)
- 3. Programmation linéaire (1.5 h)

- 1. Bases de l'optimisation (3.0 h)
- 2. Convexité, quelques algorithmes itératifs (3.0 h)
- 3. Méthodes stochastiques gradient-free (3.0 h)

Information Theory

Course supervisor: Paul Fraux

Total: 11.0 h **CM:** 4.5 h, **TD:** 1.5 h, **TP:** 3.0 h

SPM-MAT-007 back

Evaluation methods: 2h writtent test, can be retaken

CM:

- 1. Codage source de canaux discrets (1.5 h)
- 2. Théorie de l'information 1/2 (1.5 h)
- 3. Théorie de l'information 2/2 (1.5 h)

TD:

1. Entropie et divergence KL (1.5 h)

TP:

1. Codage de Huffman (3.0 h)

Business Management and Transformation

Course supervisor: Francis Dorveaux

Total: 26.5 h **CM:** 5.5 h, **TD:** 12.0 h, **TP:** 8.5 h

SPM-HEP-014 back

Evaluated skills:

 $\bullet\,$ Business Intelligence

CM:

- 1. Introduction (1.0 h)
- 2. Panorama des entreprises (2.0 h)
- 3. Synthèse et débat (2.5 h)

TD:

- 1. TD 1 : Les théories modernes de l'entreprise + explications des attendus des TD 2 à 6 (1.5 h)
- 2. TD 2 : Les processus "colonne vertébrale" de l'organisation (1.5 h)
- 3. TD 3: La dynamique externe (1.5 h)
- 4. TD 4: Transformation des entreprises (3.0 h)
- 5. TD 5: Business Development 1 (à préciser) (1.5 h)
- 6. TD 6: Business Development 2 (à préciser) (3.0 h)

- 1. 1ère visite en entreprise (4.5 h)
- 2. 2ème visite en entreprise (4.0 h)

Conferences

 ${\bf Course\ supervisor:\ } {\bf Course\ supervisor:\ } {\bf Damien\ Rontani,\ } {\bf Herv\'e\ Frezza-Buet}$

Total: 10.0 h

SPM-HEP-013 back

CM:

1. tdb (10.0 h)

Human ressources Management

Course supervisor: Damien Rontani, Hervé Frezza-Buet

Total: 18.0 h

SPM-HEP-019 back

Evaluated skills:

• Management

TD:

1. tbd (18.0 h)

Sport S07

 $\textbf{Course supervisor:} \ \operatorname{Herv\'{e}} \ \operatorname{Frezza-Buet}$

Total: 21.0 h

SportS07 back

TD:

1. Cours de sport (21.0 h)

FOREIGN LANGUAGES AND CULTURE 1

Course supervisor: Elisabeth Leuba

Total: 21.0 h

LV1S07 back

Description: The first foreign language is generally English. Students are divided into level groups; in class, work is not only focused on the 4 language competences but also on various topics studied in depth according to students' levels. Topics cover a range of fields, such as civilisation, society and the professional world. Limited class size enables active participation and significant improvement in the language. The educational approach is varied: group work, class presentations, specific exercises, research, debates, etc.

Learning outcomes: At the end of the course, students will have improved their ability to communicate in an international professional, academic or personal context.

Evaluation methods: Assessment will be by continuous assessment according to criteria to be determined by each teacher, taking into account personal investment in the course. Each course will be marked out of 20 at the end of the semester.

Evaluated skills:

- Research and Development
- Consulting
- Business Intelligence
- Management

TD:

1. Cours (21.0 h)

FOREIGN LANGUAGES AND CULTURE 2

Course supervisor: Beate Mansanti

Total: 21.0 h

LV2S07 back

Description: Students are offered a range of second foreign languages at different levels, including for beginners. Students are divided into level groups; in class, work is not only focused on the 4 language competences but also on various topics studied in depth according to students' levels. Topics cover a range of fields, such as civilisation, society and the professional world. Limited class size enables active participation and significant improvement in the language. The educational approach is varied: group work, class presentations, specific exercises, research, debates, etc.

Learning outcomes: At the end of the course, students will have improved their ability to communicate in an international professional, academic or personal context.

Evaluation methods: Assessment will be by continuous assessment according to criteria to be determined by each teacher, taking into account personal investment in the course. Each course will be marked out of 20 at the end of the semester.

Evaluated skills:

- Research and Development
- Consulting
- Business Intelligence
- Management

TD:

1. Cours (21.0 h)

APPLICATIVE ARCHITECTURES

Course supervisor: Virginie Galtier

Total: 41.0 h **CM:** 12.0 h, **TD:** 1.5 h, **TP:** 25.5 h

SPM-INF-015 back

Evaluation methods: 2h written test, can be retaken

Evaluated skills:

- Development
- System

CM:

- 1. panorama des architectures client-serveur et middleware (3.0 h)
- 2. architecture REST, OpenAPI (1.5 h)
- 3. architecture basée sur les MOM (Kafka) (1.5 h)
- 4. HA, FT, et déploiement (K8s) (3.0 h)
- 5. cloud (3.0 h)

TD:

1. études de cas architecture (1.5 h)

- 1. client REST (3.0 h)
- 2. serveur REST (3.0 h)
- 3. tests avec SoapUI (3.0 h)
- 4. graphQL (1.5 h)
- 5. tuto Kafka (4.5 h)
- 6. Kubernetes (4.5 h)
- 7. cloud 1/2 (3.0 h)

8. cloud 2/2 (3.0 h)

SOFTWARE DEVELOPMENT PROJECT

 $\textbf{Course supervisor:} \ \operatorname{Herv\'{e}} \ \operatorname{Frezza-Buet}$

 $\textbf{Total:} \ 84.0 \ \mathbf{h}$

SPM-PRJ-003 back

 ${\bf Evaluation\ methods:}\ {\bf Report\ and\ defense}$

Evaluated skills:

- Modelling
- Research and Development
- ullet Development
- \bullet Management

Introduction to Quantum Computing

Course supervisor: Damien Rontani, Stéphane Vialle

Total: 35.5 h

CM: 16.5 h, TD: 4.5 h, TP: 9.0 h, Projet: 5.5 h

SPM-INF-004 back

Bibliography:

- Ref. [1]: R. Hundt, Quantum Computing for Programmers, Cambridge University Press (2022)
- Ref. [2]: P. Kaye, R. Laflamme, M. Mosca, An Introduction to Quantum Computing, Oxford University Press (2006)

Evaluation methods: Assessment of the mini project

Evaluated skills:

- Modelling
- Development

CM:

- 1. Cours d'architectures quantiques (1.5 h)
- 2. Cours de formalisme pour l'informatique quantique digitale (3.0 h)
- 3. Cours d'introduction aux portes et circuits quantiques (3.0 h)
- 4. Cours de présentation des circuits quantiques classiques (4.5 h)
- 5. Cours de modèles de temps d'exécution et de performance (1.5 h)
- 6. Cours de présentation des circuits quantiques variationnels (3.0 h)

TD:

- 1. TD de formalisme et d'analyse de circuits quantiques (1.5 h)
- 2. TD de conception d'algorithmes quantiques sur QPU (1.5 h)
- 3. TD de conception d'algorithmes variationnels sur CPU+QPU (1.5 h)

- 1. TP de mise en oeuvre de circuits quantiques en qiskit sur simulateur et machines quantiques (3.0 h)
- 2. TP de conception et mise en oeuvre d'algorithmes quantiques à partir de circuits connus (3.0 h)
- 3. TP de conception d'une méthode d'optimisation par algorithme variationnel sur CPU+QPU (3.0 h)

Programming paradigms

Course supervisor: Hervé Frezza-Buet

Total: 28.5 h

SPM-INF-016 back

Evaluation methods: Assessment based on participation in experiments (TP) and results returned

CM:

- 1. Cours-1 (1.5 h)
- 2. Cours-2 (1.5 h)
- 3. Cours-3 (1.5 h)
- 4. Cours-4 (1.5 h)

- 1. TP-1 (4.5 h)
- 2. TP-2 (4.5 h)
- 3. TP-3 (4.5 h)
- 4. TP-4 (4.5 h)
- 5. TP-5 (4.5 h)

AUTONOMOUS ROBOTICS

Course supervisor: Jérémy Fix

Total: 41.0 h **CM:** 13.5 h, **TD:** 3.0 h, **TP:** 22.5 h

SPM-INF-017 back

Evaluation methods: 2h written exam, can be retaken

CM:

- 1. Intro (1.5 h)
- 2. Introduction à ROS (1.5 h)
- 3. Rappels de probabilités (1.5 h)
- 4. Estimation d'état (1.5 h)
- 5. Localisation (1.5 h)
- 6. Carto + SLAM (1.5 h)
- 7. Planif (1.5 h)
- 8. Navigation (1.5 h)
- 9. Architecture et interaction (1.5 h)

TD:

- 1. Filtres de Kalman (1.5 h)
- 2. Localisation (1.5 h)

- 1. ROS et simulation (3.0 h)
- 2. Navigation et robots réels (3.0 h)
- 3. Filtre de Kalman et estimation d'état (1.5 h)
- 4. Localisation (3.0 h)
- 5. Carto + SLAM (3.0 h)
- 6. Path planning (3.0 h)
- 7. Path following (3.0 h)
- 8. Integration (3.0 h)

ROBOTIC AND AI PROJECT

Course supervisor: Hervé Frezza-Buet

Total: 21.0 h

SPM-PRJ-004 back

Evaluation methods: Evaluation based on the code deposited on the git and ongoing monitoring by the supervisors

Evaluated skills:

- \bullet Modelling
- Research and Development
- ullet Development
- $\bullet \ \ {\rm Management}$

ENGINEER, ENVIRONMENT AND SOCIETY

 ${\bf Course\ supervisor:\ } {\bf Julien\ Colin}$

Total: 14.0 h

SPM-HEP-011 back

TD:

1. tbd (14.0 h)

Controversy

Course supervisor: Hervé Frezza-Buet, Damien Rontani

Total: 18.0 h

SPM-HEP-018 back

TD:

1. tbd (18.0 h)

Systems engineering

Course supervisor: Virginie Galtier

Total: 21.5 h

SPM-HEP-017 back

Evaluation methods: Multiple-choice questions and case study (1.5 hours)

Evaluated skills:

• Modelling

CM:

- 1. Introduction à l'ingénierie système (définitions, historique, motivations, concepts système) (2.0 h)
- 2. MBSE (définitions, évolution, cycles de vie, interfaces, processus, exigences, V&V (2.0 h)
- 3. Introduction à SysML (1.0 h)
- 4. modélisation et simulation à base d'agents (1.0 h)
- 5. modélisation de systèmes cyber-physiques et co-simulation (1.0 h)
- 6. AFIS (2.0 h)
- 7. Jumeaux Numérique (2.0 h)

- 1. familiarisation avec un logiciel de modélisation SysML, mise en évidence des liens entre diagrammes (3.0 h)
- 2. modélisation et simulation à base d'agents (3.0 h)
- 3. modélisation de systèmes cyber-physiques et co-simulation (3.0 h)

Sport S08

 $\textbf{Course supervisor:} \ \operatorname{Herv\'{e}} \ \operatorname{Frezza-Buet}$

Total: 21.0 h

SportS08 back

TD:

1. Cours de sport (21.0 h)

Engineering internship

Course supervisor: Hervé Frezza-Buet, Damien Rontani

SPM-STA-002 back

Evaluated skills:

- \bullet Modelling
- $\bullet\,$ Research and Development
- ullet Development
- Certification
- \bullet System
- ullet Consulting
- Business Intelligence
- Management

FOREIGN LANGUAGES AND CULTURE 1

Course supervisor: Elisabeth Leuba

Total: 21.0 h

LV1S08 back

Description: The first foreign language is generally English. Students are divided into level groups; in class, work is not only focused on the 4 language competences but also on various topics studied in depth according to students' levels. Topics cover a range of fields, such as civilisation, society and the professional world. Limited class size enables active participation and significant improvement in the language. The educational approach is varied: group work, class presentations, specific exercises, research, debates, etc.

Learning outcomes: At the end of the course, students will have improved their ability to communicate in an international professional, academic or personal context.

Evaluation methods: Assessment will be by continuous assessment according to criteria to be determined by each teacher, taking into account personal investment in the course. Each course will be marked out of 20 at the end of the semester.

Evaluated skills:

- Research and Development
- Consulting
- Business Intelligence
- Management

TD:

1. Cours (21.0 h)

FOREIGN LANGUAGES AND CULTURE 2

Course supervisor: Beate Mansanti

Total: 21.0 h

LV2S08 back

Description: Students are offered a range of second foreign languages at different levels, including for beginners. Students are divided into level groups; in class, work is not only focused on the 4 language competences but also on various topics studied in depth according to students' levels. Topics cover a range of fields, such as civilisation, society and the professional world. Limited class size enables active participation and significant improvement in the language. The educational approach is varied: group work, class presentations, specific exercises, research, debates, etc.

Learning outcomes: At the end of the course, students will have improved their ability to communicate in an international professional, academic or personal context.

Evaluation methods: Assessment will be by continuous assessment according to criteria to be determined by each teacher, taking into account personal investment in the course. Each course will be marked out of 20 at the end of the semester.

Evaluated skills:

- Research and Development
- Consulting
- Business Intelligence
- Management

TD:

1. Cours (21.0 h)