ML 2
Machine learning 2
Description: This course complements Machine Learning 1 with notions of data processing (dimension reduction, etc.), unsupervised learning, active and semi-supervised learning, explicability issues.
Learning outcomes: By the end of this course, students will have completed their breadth approach to machine learning.
Evaluation methods: 2h written test, can be retaken.
Evaluated skills:
- Research and Development
- Development
Course supervisor: Arthur Hoarau
Geode ID: 3MD4010
CM:
- Réduction de dimension (1.5 h)
- Partitionnement (1.5 h)
- Quantification vectorielle (1.5 h)
- Détection anomalies (1.5 h)
- Apprentissage semi-supervisé (1.5 h)
- Apprentissage actif (1.5 h)
- Explicabilité (1.5 h)
TP:
- Réduction de dimension (3.0 h)
- Apprentissage non supervisé (3.0 h)
- Apprentissage semi-supervisé (3.0 h)
